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Abstract—Self-concatenated trellis coded modulation with b(g — |)
interleavers is a concatenated coded scheme based on only one rate
bg/n convolutional code. The b input information sequences and
their permuted versions are connected through 5(¢g — 1) interleavers
to the by inputs of the convolutional encoder. A subset of the out-
put, including the b information bits and parity bits, is mapped to
modulation signals, e.g., MPSK, MQAM. First we obtain an upper
bound to the average maximum-likelihood bit error probability of
the self-concatenated convolutional coding scheme for binary mod-
ulation which also applies to QPSK modulation. Design rules for
the single convolutional code, that maximize the interleavers gain
and the asymptotic slope of the error probability curves are pre-
sented. Asymptotic error performance and design rules for binary
modulation are extended to non-binary modulations for the design
of self-concatenated trellis coded modulation. A low-complexity self-
iterative decoding algorithm for self-concatenated trellis coded mod-
ulation is proposed. Examples of self-concatenated coding/decoding
are given for binary moedulation with ¢ = 2,5 = 1, and 8-PSK modu-
lation with ¢ = 2, b = 2, Finally, simulation results for the examples
are given for short and long interleavers, using the self-iterative de-
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Concatenated coding schemes have been studied by For-
ney [1]. More recent development in concatenated coding
schemes are turbo codes proposed by Berrou et al [2].
Turbo codes are parallel concatenated convolutional codes
(PCCC) using two or more constituent codes.

Trellis coded modulation (TCM) was proposed by Unger-
boeck [3]to achieve power and bandwidth efficiency. Turbo
(parallel concatenated) trellis coded modulation was pro-
posed in [4], [S] and [6] using the concept of turbo codes
and TCM. Later another scheme called serial concatenated
TCM was proposed in [7].

These concatenated coding schemes use a suboptimum
decoding process based on iterating an ** a posteriori prob-
ability (APP) algorithm™ [8] applied to each constituent
code. A soft-input soft-output (SISO) APP module de-
scribed in [ 13] was used in this paper to implement a self-
iterative decoder. As examples, we will show the results
obtained by decoding a rate 1/3 self-concatenated code for
binary PSK, and a self-concatenated TCM with 8-PSK to
achieve 2 bps/Hz.

The research described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology. under a contract with the
National Acronautics and Space Administration, and at the Politecnico di
Torino. The work was supported in part by NATO under Research Grant
CRG 951208 and by Qualcomm, Inc.

For self-concatenated codes, we obtain analytical upper
bounds to the performance of a maximum-likelihood (ML)
decoding using analytical tools and notations introduced
in [10] and [11]. We propose design rules leading to the
optimal choice of a high rate convolutional code that max-
imize the interleavers gain [10] and the asymptotic code
performance, for both binary and nonbinary modulation.

The basic concept of self-concatenation scheme! con-
sidered in this paper, shown in Fig. 1, was later indepen-
dently proposed by Loeliger [9] for the special case of
one interleaver and binary modulation. The structure in
Fig. 1, which we will refer to as self-concatenated code
v/ith b(g — 1) interleavers, is a concatenated coded scheme
bas=d on one rate bg /n convolutional code, which accepts
the b information sequences and their permuted versions
through b(g — 1) interleavers at its bg inputs. As for
turbo codes, the information data is transmitted once. The
scheme in Fig. 1 is best suited for the construction of trellis
cod=d modulation, based on one trellis.
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Fig. 1. Self-concatenated code with b = 1.

In Section 2, we derive analytical upper bounds to the
bit error probability of self-concatenated codes, using the
concept of “uniform interleavers”, i.e., averaging the per-
formance over all possible g — 1 interleavers. In Sec-
tion 3, we propose design rules for self-concatenated codes
through an asymptotic approximation of the bit error prob-
ability bound assuming long interleavers or large signal-
to-noise ratios. Section 4 extends the basic concept of
self-concatenation, and the asymptotic results on bit error
probability for large interleavers to trellis coded modula-
tion schemes. Section 5 describes a self-iterative decod-
ing algorithm for self-concatenated codes for binary and
non-binary modulations. Section 6 presents an example
of a rate 1/3 self-concatenated code with ¢ = 2 using a
rate 2/4 optimum convolutional code (based on the design
rules). Simulation results for this example are given for
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input blocks of 256 and 1024 bits. Finally, an example
of construction for a rate 2/3 self-concatenated code from
a rate 4/5 optimum convolutional code (based on the de-
sign rules for the non-binary case), that uses only a two
dimensionai 8-PSK for throughput of 2 bps/Hz, is pre-
sented. Simulation results using self-iterative decoding
for this self-concatenated TCM for input block sizes of
2048 bits and 16384 bits are also given in Section 6.

2. Analytical Bounds on the Performance of
Self-Concatenated codes

Consider a linear (N/R., N) block code C with code
rate R., and minimum distance h,,. An upper bound on the
bit-error probability (using the union bound) of the block
code C over AWGN channels, with coherent detection, and
using maximum likelihood decoding, can be obtained as

N/R. N

Py Z—AchQ(\/ZR hEp/No) (1)
h=hp w=I

where E, /Ny is the signal-to-noise ratio per bit, and AS' A
represents the number of codewords of the block code
C having output weight h, and associated with input se-
quences of weight w. Af}‘h is the input—output weight
coefficient (IOWC). The function Q(v/2R; h E,/Ny) rep-
resents the pairwise error probability which is a monotonic
decreasing function of the signal to noise ratio and the
output weight £. The Q function is defined as Q(x) =

I oo _ 2
—= [, e Tdr

This bound applies to convolutional codes as well if we
construct an equivalent block code from the convolutional
code. Obviously, this results applies also to concatenated
codes including parallel and serial concatenations as well
as to the self-concatenated codes discussed in this paper.
As soon as we obtain the input—output weight coefficients
A ,, for aself-concatenated code, we can compute its per-
formance. Clearly the results also applies to independent
Raylelgh fadmg channel if we replace Q(/2R, h E,/Ny)
by [I+R o , where in this case & corresponds to the
dlversxty 0 the code

2.1. Self-Concatenated Convolutional Codes

The structure of a self-concatenated convolutional code is
composed of g — | interleavers and a single systematic
recursive convolutional code C (it will be proved shortly
that the code should be recursive) with rate rate ;1— where
r represents the number of parity bits at the output of the
encoder for each input symbol. All permuted systematic
bits are not transmitted. In this way, the information bit se-
quence is transmitted once through the channel as for turbo
codes, and the code has the equivalent block code rep-
resentation (N/R., N). The self-concatenated code uses
g — 1 independently chosen interleavers each of size N
bits, generating a self-concatenated code C with overall
rate R, = '1# For illustration only, the structure of a
rate 1/2, 4-state self-concatenated convolutional code with
q = 3, r=1is shown in Fig. 2.
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Fig. 2. Example of self-concatenated code, b = 1.

2.2. Computation of AC 1 Jor Self-Concatenated Codes
with Random Interleavers

If the input block N is large, then the computation of
w » for fixed interleavers is an almost impossible task,
except for the first few input and output weights. How-
ever, the average input-output weight coefficients Ag' , for
self-concatenated codes with g — 1 interleavers can be ob-
tained by averaging (1) over all possible interleavers. This
average is obtained by replacing the actual interleavers
with abstract interleavers called uniform interleavers [10].
A uniform interleaver is defined as a probabilistic device
that maps a given input word of weight w into all its dis-
tinct (%) permutations with equal probability p = 1/ (%),
so that the input and output weight is preserved, where N
represent the size of the interleaver.

With the knowledge of the IOWC AC ''''' w,.n for the
single convolutional code, using the concept of uniform
interleaver, the AS w4 for the self-concatenated code can be
obtained.

According to the properties of uniform interleavers, the
ith interleaver transforms an input data of weight w at
the input of the self-concatenated code into all its distinct
({X) permutations at the ith input of the convolutional code
with rate g/n fori = 1,...,q — 1. As a consequence,
each input data block of weight w, through the action of
g — 1 uniform interleavers, is sent to the inputs of the rate

q/n convolutional code, generating (I\w/)q—l codewords of
the code. Thus, the expression for the IOWC of the self-
concatenated code is

AC
AS — w,w,..., wh . (2)
G

where A, is the number of codewords of the con-
volutional code of weight 4 associated with the g input
words of weight w.

Since we compute the average performance, this means
that there will always be, for each value of the signal-to-
noise ratio, at least a set of ¢ — | particular interleavers
yielding performance better than or equal to that of the
g — 1 uniform interleavers. Using (2)in (1), we can rewrite
the upper bound in (1) as

N/R. N

Pyte) < ZZ ]q"’l"Q(\/ZR h Ep/No) . (3)



3. Design of Self-Concatenated Codes

In the following we use analytical tools, definitions, and
notations introduced in [10], and [11]. The design of self-
concatenated codes is based on the asymptotic behavior of
the upper bound in (3) for large interleavers. The reason
for the good performance of parallel and serial concate-
nated codes with input block size of N symbols was that
the normalized coefficients A , /N of aconcatenated code
decrease with interleaver size for all w, and h. For a given
signal-to-noise ratio and large interleavers the maximum
component of Ag‘h/N over all input weights w and output
weights k, is proportional to N*, with corresponding min-
imum output weight A(ap).2 If ap < O then for a given
SNR the performance of the concatenated code improves
as the input block size is increased. If the input block size
increases then the size of interleavers used in the concate-
nated code should also increase. Whenayy < 0 we say that
we have “interleaving gain” [10]. The more negative is ay
the more interleaving gain we can obtain. In order to com-
pute vy we proceed as follows. Consider arate R = g/n
convolutional code C with memory v, and its equivalent
(gN/R,qgN — gv) block code whose codewords are all
sequences of length g N/ R bits of the convolutional code
starting from and ending at the zero state. By definition,
the codewords of the equivalent block code are concatena-
tions of error events of the convolutional codes. By error
event of a convolutional code, we mean a sequence diverg-
ing from the zero state attime ¢ = 0 and remerging into the
zero state at some discrete time 7 > 0. Let AS - w.h,j DE
the input—output weight coefficients given that the convo-
lutional code generates j error events with g input weights
w, and output weight & (see Fig. 3). Ay, . .4, actually
represents the number of sequences of weight A, with ¢
input weights w, and the number of concatenated error
events j without any gap between them, starting at the be-
ginning of the block.. For N much larger than the memory
of the convolutional code, the coefficient AS |, of the
equivalent block code can be approximated by

Cc A (N Cc
Aw W awh Z j Aw w....w.h,j (4)
i=1

where n 4, the largest number of error events concatenated
in acodeword of weight 4 and generated by g weight-w in-
put sequences, is a function of 4 and w that depends on the
encoder. The large N assumption permits neglecting the
length of error events compared to N, which also implies
that the number of ways input sequences producing j error
events can be arranged in a register of length N is (7) N
represents the number of input symbols or, equivalently,
trellis steps.

Let us return now to the block code equivalent to the
self-concatenated code. In the following, subscript “m
will denote “minimum”, and subscript “M”" will denote
“maximum”. Then substituting the above approximation

2ay is the largest exponent of N as defined in eq. 11,

1 2 3 /
ERROR EVENT

WiteWig. By

WophWog, g / j
/ @ Iwim=w;alm Tn=h
INPUT CODEWORD = int
WEIGHTS WEIGHT

Fig. 3. A code sequence in AC
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into (3), we obtain the bit error probability bound for the
self-concatenated code as

wos ) g
Pb(e)<hzh;"u;jZ‘N[({X)]ql w,. wth( 2Rh_)

(5)
We are interested in large interleaver lengths, and thus use
for the binomial coefficient the asymptotic approximation

(1}/ ) ~ % Substitution of this approximation in (5) gives

the bit error probability bound in the form

N/R. N
Py(e) < ZZZN! @-Dw-lp , Q([2R. h ”)
mw_lj o
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Using expression (6), we will obtain some important
design rules. The bound (3) to the bit error probability
is obtained by adding terms of the first summation with
respect to the self-concatenated code weights 2. The co-
efficients of Q(-) in (3) depend, among other parameters,
on N. For large N, and for a given A the dominant coef-
ficient of Q(-) is the one for which the exponent of N is
maximum. Define this maximum exponent as

Bw,h,j = w,...wh,j * )

o(h) £ max(j — (g — Dw = 1} . (8)

Evaluating a(h) in general is not possible without specify-
ing the constituent code. Thus, we will consider two im-
portant cases, for which general expressions can be found.

3.1. The Exponent of N for the Minimum Weight.

For large values of E,/ Ny, the performance of the self-
concatenated code is dominated by the first terms of the
summations in A, corresponding to the minimum values
h = h,,. Using (8), it can be shown that

a(hm) = —q +1 €)

The RHS is negative for g > 2, thus there is interleav-
ing gain. The result in (9) shows that the exponent of N
corresponding to minimum weight self-concatenated code-
words is always negative, thus yielding an interleaver gain
at high E,/Ny. Substitution of the exponent a(h,,) into
(6) truncated to the first term of the summation in # yields
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where the constant B,, is independent of N, and can be
computed from (6) and (7).

Expression (10) suggests that, for the values of E,/ Ny
and N where the self-concatenated performance is dom-
inated by the free distance d}: = h,, increasing the in-
terleaver length yields a gain in performance. To increase
the interleaver gain one should increase the number of in-
terleavers. However, this decreases h,,. To improve the
performance with E, /Ny one should choose a code such
that s, is large. Therefore there should be an optimum
choice for g at high E,/Ny.

As in serial concatenated codes there are coefficients of
Q(-)inh forh > hy,, that increase with N. Therefore, we
will evaluate the largest exponent of N, defined as

V7Y, 2 m:\x{a(h)} = mahx{j —(g-DhHw-1}. 1D

This exponent will allow us to find the dominant contribu-
tion to the bit error probability for N — oo.

3.2. The Maximum Exponent of N

We need to treat the cases of non-recursive and recursive
encoders separately. For a non-recursive encoder, we can
show that czpy > 0, thus there is no interleaving gain.

For a recursive encoder, after maximization required
in (11), we obtain

< - ["—;“—IJ (12)

Thus there is interleaving gain. So in order to obtain inter-
leaving gain in a self-concatenated code, we should select
a recursive encoder.

Next we consider the weight A (ap) which is the output
weight of the code associated to the highest exponent of
N.

» For q even, the weight f1(ay) associated to the highest
exponent of N is given by

el

h(ay) = ﬂdz— + 1 (13)

» For g odd, the value of h(ay) is given by

(q - 3)dr.cn‘

5 +hD + 1. (14)

h(ay) =
Here 3 is the minimum weight of sequences of the code
due to the parities generated by weight 3 input sequences.
In (13) and (14) d,,; is the effective free distance of the
code, which here is the minimum weight of sequences of
the code due to the parities generated by weight 2 input

sequences. We can use the Tables of recursive system-
atic convolutional codes with maximum effective free dis-
tances, and maximum hf,?’ which are givenin [11]and [12].
However better codes for self-concatenated codes can be
found since for rate g/n convolutional codes we have the
constraint that the g input sequences entering the g inputs
of the q/n recursive convolutional code must have equal
weights (ignoring the edge effect due to termination of the
code to the all zero state). Examples are given in Sec-
tion 6 for a rate 1/3 self-concatenated scheme with binary
modulation, and input block sizes 256, and 1024 bits.

4. Self-Concatenated Trellis Coded Modulation

We propose a novel method to design self-concatenated
TCM, which achieves b bits/sec/Hz, using a single rate
bq /(bg + 1) recursive systematic binary convolutional en-
coder where only the b + 1 outputs of the encoder are
mapped to 2¢+D modulation levels. Consider b binary
streams entering the self-concatenated TCM. (g — 1) in-
terleavers for each input data stream are used. Thus the
proposed scheme can be implemented with b(g — 1) in-
terleavers. The b input bits plus one parity are mapped to
the modulation signal points. In this way, we are using
b information bits for every modulation symbol intervals,
resulting in b bit/sec/Hz transmission. For illustration, the
basic structure of self-concatenated trellis coded modula-
tion for b=3, g=2, and 16QAM modulation that achieves 3
bps/Hz is shown in Fig. 4 (We assume that the bandwidth
is 1/T, where T is the modulation signal symbol duration.
This RF bandwidth can be obtained for example by using
Nyquist filters with no excess bandwidth).
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Fig. 4. Example of encoder for self-concatenated trellis coded modula-
tion.

The binary convolutional code and the mapping will be
Jointly optimized based on maximizing the effective free
Euclidean distance of the TCM.

For M-QAM (M = 2?#*2) modulations we can also use
b+ 1 levels for the I-channel and the next b + | levels
for the Q-channel, and achieve a spectral efficiency of 2b
bits/sec/Hz.

4.1. Design Criteria for Self-Concatenated TCM

It can be shown that the dominant term in the transfer
function bound on biterror probability of self-concatenated
TCM, averaged over all possible interleavers of size N bits,
for large N, is proportional to (note that the interleaving
gain does not depend on b)

- — 64 E
N L(t/-H)/ZJe S°(E./4N,)



where | x | represents the integer part of x, and

d?,
82 q 2r.c|r , (15)
for g even, and
—3)d?
(32 (q ) fell (hg))z , (16)

2

for g odd.

The parameter d,, is the effective free Euclidean dis-
tance of the TCM which is the minimum Euclidean dis-
tance at the output of TCM due to input sequences with
Hamming distance 2, with the constraint due to the inter-
leavers discussed before. £ is the minimum Euclidean
distance of TCM sequences generated by input sequences
with Hamming distance 3, again with the constraint due to
the interleavers, and E, /N, is the M-ary symbol signal-
to-noise ratio.

Previous results were valid for very large N. On the
other hand, for large values of the signal-to-noise ratio
E;/N,, the performance of self-concatenated TCM is dom-

inated by
N~q+1e-(h},, E,/4N,)

where h,, is the minimum Euclidean distance of the self-
concatenated TCM scheme. We considered three differ-
ent types of mappings for the design of self-concatenated
TCM, namely the well known natural mapping, Gray code
mapping, and reordered mapping. Examples are given in
Section 6 for 2 bps/Hz with 8PSK modulation for input
blocks of 2048, and 16384 bits.

5. Iterative Decoding of Self-Concatenated Codes for
Binary and Non-Binary Modulations

In previous sections, we have shown analytical results
for the performance of self-concatenated codes, when de-
coded using a ML algorithm. In practice, however, ML
decoding of these codes with large N is an almost im-
possible task. Thus, to acquire practical significance, the
above described codes and analytical bounds need to be ac-
companied by a decoding algorithm of the same order of
complexity as the decoder for a single code, yet retaining
the performance advantage. In this section, we present an
iterative decoding algorithm for self-concatenated codes,
with complexity not significantly higher than that needed
to decode the single code used.

For decoding of the received sequence, we will use the
soft input soft output SISO APP module described in { 13].
A functional diagram of the iterative decoding algorithm
for self-concatenated codes is presented in Fig. 5, for g=3,
b=1.

We will explain how the algorithm works, according to
the blocks of Fig. 5 (This iterative decoder can be used
tor example for the self-concatenated structure in Fig. 2).
The blocks labeled “SISO” have two inputs and two out-
puts. The input labeled A(c: /) represents the reliability
of the unconstrained output symbols of the encoder, while
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Fig. 5. lterative decoding algorithm for self-concatenated convolutional
code,g =3

that labeled A(u; I) represents the reliability of the uncon-
strained input symbols of the encoder. Similarly, the out-
puts represent the same quantities conditioned to the code
constraint as they are evaluated by the APP decoding algo-
rithm in the log domain. The SISO APP module updates
both reliability of the input and output symbols based on
the code constraints. Both outputs of SISO, i.e., A(c; 0),
and A(u; O) directly generate the “extrinsic” information
required for iterative decoding. So there is no need to sub-
tract the the unconstrained input reliability from the output
reliability generated by the APP algorithm.

During the first iteration of the self-iterative algorithm:
The block “SISO ” is fed with the demodulator soft output,
consisting of the reliability of symbols received from the
channel, i.e., the received output symbols of the encoder.
The received reliabilities are processed by the SISO mod-
ule that computes the extrinsic information of the inputs
symbols conditioned on the code constraints. This infor-
mation is passed through the inverse interleavers (blocks
labeled “ni"". i =1,..,q — 1). Deinterleaved extrinsics
after exchange of information are passed through inter-
leavers (blocks labeled “m;”,i = 1, .., — 1). The outputs
of the interleavers correspond to the reliabilities of the in-
put symbols of the same and only code (self-iteration), and
they are sent to the SISO module’s port, which corresponds
to input symbols, and so on for each iteration.

The reliability of input symbols of the SISO modute and
the extrinsics for the input symbois of the SISO will be used
in the final iteration to recover the information bits.

5.1. Bit-by-Bit Iterative Decoding using the APP SISO Al-
gorithm in Log Domain.

For completeness we briefly describe the SISO algo-
rithm based on the trellis section shown in Fig. 6, for a
generic code C with input symbol u and output symbol
¢. A detailed description is provided in [13]. Consider
a code with g input bits and p symbols binary {0, 1} or
nonbinary. Let the input symbol to the convolutional code
uy(e) represent uy ;(e);i = 1,2, - -, g the input bits {0, 1}
on a trellis edge at time £, and let the output symbol of the
convolutional code ¢, () represent ¢x ;(e);i = 1,2, -, )/
symbols binary or nonbinary.

Define the reliability of a bit Z taking values {0, 1} at
time k as

a PlZ =1;"]
il I=log 570

The second argument in the brackets, shown as a dot, may
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Fig. 6. Trellis Section for the Code C.

represent /, the input, or O, the output, to the SISO. We
use the following identity

L
a = log[y_ ¢*] 2 max*{a;}
i=1 !

which can be computed using a look-up table. We define
the “max*” operation as a maximization (compare-select)
plus a correction term (lookup table). We can replace
“max* ” with “max” for a small penalty in performance.

The received samples {y, ;} at the output of the receiver
matched filter are y,; = Ax(cy;) + ni,, the noise has
variance o2 per dimension, and E{|x(c;)|?}=1, which is
the assumed channel model ( ¥ = 2%27). For binary mod-
ulation x(ci;) = ¢y — 1). Without loss of generality,
assume the encoder starts (at the beginning of the block) at
the all zero state and ends into the all zero state (at the end
of block, when termination is used). For an encoder with
memory v, let s represent the state of the encoder, where
se{0,...,2"—1}.

5.1.1. The APP SISO Algorithm for the Code C.

The forward and the backward recursions are:

q9
() = max” {a[sT@)]+ Y uni(@MelUpii 1]
est(e)=xs . i=1
14
+ ) Aelewi(e)s 11} + by,

i=l

Bi(s) = emz§;v{ﬁk+|[SE(€)]
q
+ ) ki@ 1 [Ukgris 1]
i=1
I)
+ ) Airilcesri(e) I} + hg,

i=1

with initial values, ag(s) = 0, if s = O (initial zero state)
and og(s) = ~00, if s # 0. Similarly, 8,(s) =0,ifs =0
(final zero state) and 8,(s) = —oo, if s % 0. Recursions
are done for k = 1,..., n — I, where n represents the
total number of trellis steps for the encoder, and h,,, Ay,
are normalization constants. Based on the channel model
described above, we have

_ ki = Ax(eri(e))?

Aelevi(e); 1] = 552

(7

If we replace “max* " with “max”, we have a Viterbi-type
algorithm in the forward and backward directions. The
extrinsic bit information for Uy j, j = 1,2-..,q; can be
obtained from:

MU j; 0) = max- {ae—1[s5(e)]

euy jle)=I

q9 P
+ ) wei@OMlUiii 11+ Y Melewie); 1]+ BelsE (@)}
i=1 i=t

i#j
4
— max* (o [s5@)+ Y upi(@)relUsis 1]

eug j(e)=0

i=l

i#j
p
+ ) Melci(e); 1+ BlsE(e)])
i=l1

At the first iteration all input reliabilities A, [Uy;; I] are
zero. The SISO computes the extrinsic information
Ay (Ug, j; O) from the above equations, and provides them
to itself after exchange of information. The exchange of
information for computing the input reliabilities for the
next use of SISO can be done as follows

q
M(Uiji 1) =) X (Usi; 0)
i%j
where )»',C(Uk' ;3 1), and A}‘(Uk,i: O) represent unpermuted
versions of A, (Uy ;; 1), and A, (Uy ;; O) respectively.
The self-iterative decoder makes decisions on

A=

q
Ae(Ug; 0)

by passing it through a hard limiter.

6. Examples and Simulation Results for
Self-Concatenated Codes

6.1. Example and Simulation Results for Rate 1/3 Self-
Concatenated Code with Binary Modulation

Consider arate 1/3 self-concatenated code with g=2, and
a 16-state recursive convolutional code, (obtained from a
table for 2/4 codes with maximum effective free distance
in [12]) as shown in the Fig. 7. The simulation results for
this code using the iterative decoder in Fig. 8 are shown
in Fig. 9(a) for input block N = 256, and(b) for 1024 bits.
Two uses of SISO per input block were counted as one
iteration.

6.2. Examples and Simulation Results for Self-Concatenated
Trellis Coded Modulation

Consider self-concatenated TCM with g=2, constructed
from arate 4/5,16-state recursive convolutional code, (ob-
tained from a limited search satisfying the proposed criteria
for design of self-concatenated TCM). Two examples are
considered. The first example uses the structure in Fig. 11
with Gray code mapping, 8PSK modulation, and input
block of 2048 bits. Two interleavers, each with size 1024
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Fig. 7. A rate 1/3, 16-state Self-Concatenated Code with g=2
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Fig. 8. A self-iterative decoder for ¢ = 2.

were used. The simulation results for the first example
using iterative decoding in Fig. 12 is shown in Fig. 13(a).
For the second example the structure of self-concatenated
TCM is shown in Fig. 10 which uses reordered mapping,
and input block of 16384 bits. Two interleavers each with
size 8192 bits were used. The simulation results for the
second example are shown in Fig. 13(b). For the simula-
tions, the iterative decoder in Fig. 12 was used. Again, two
uses of SISO per input block were counted as one iteration.
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